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Abstract—A new mixed-potential integral-equation (MPIE) for- The same problem arises even for simple structures such as
mulation is developed for the analysis of electromagnetic prob- coax-fed microstrip patches or microstrip circuits whose thick-
lems due to conducting or dielectric objects of arbitrary shape em- nesses cannot be neglected. The MoM procedure for microstrip

bedded in a planarly stratified medium. In the new MPIE formula- o ; - . . .
tion, the dyadic kernel of the vector potential is kept in the simple circuits can be applied either in the spatial domain [1]-[5]

form originally developed by Sommerfeld. The scalar potential, O the spectral domain [6]-[9]. The spectral-domain analysis
which is related to the vector potential via the Lorenz gauge, is is more suitable and efficient for planar structures, while the
then represented by a double dot product of a dyadic kernelwitha - spatial-domain analysis is more general in that it can be easily
dyadic charge density. An extra line integral term, which is well be- applied to objects of arbitrary shape. Michalski presented the
haved and nonsingular, will appear when the object penetrates an . S . .
interface. The numerical implementation of the double dot product mlxed-pot_entlal |ntegral-equqt|_on (MPIE) approach in [10].
is found to be trivial if one takes advantage of the well-established However, it is usually more difficult to formulate an MPIE for
basis functions in which the unknown current density is expressed. an object of arbitrary shape in the presence of material layers,
The new MPIE formulation is employed in conjunction with the  sych as for a DR embedded in a microstrip circuit, due to the
triangular patch model to treat the problem of a dielectric res- nonuniqueness of the potentials [11]. Later, Michalski and

onator (DR) excited by microstrip circuit. A matched-load simula- -
tion procedure has been used to extract the networl§-parameters Zheng presented three formulations of the MPIE where the

of a DR microstrip circuit. The diameters of the Q circles have been Vector-potential dyadic kernel was modified so that only one
measured to determine the coupling coefficients and the) factors ~ scalar-potential kernel was required [12]. These formulations
of the DR excited by a microstrip circuit. The validity of the new are amenable to increasing the capability of the well-estab-
MPIE formulation and the numerical procedure have been verified  jisheq triangular patch MoM procedure, initially developed by
by comparing the obtained S-parameters with available measure- ' . .
ment data. Rao, Wilton, and Glisson (RWG) [13] for arbitrarily shaped
) ) ) ] geometries in free space. An advantage of the MPIE formula-
_Index Terms—Boundary integral equations, dielectric antennas, i, js that vector and scalar potentials are employed, and they
dielectric bodies, dielectric resonators, electromagnetic coupling, . :
Green'’s function, microstrip circuits, moment methods, nonhomo- are expressed, respectively, in terms of the current and charge
geneous media, numerical analysis. densities. This type of equation is often preferable to other
forms of the integral equations because less singular kernels
and more rapidly convergent spectral integrals are involved.
I. INTRODUCTION :
The MPIE has been widely adopted to solve the problems of
OST of the method of moments (MoM) analysis techmicrostrip planar circuits in the spatial domain [3], [4], [14].
niques available for microstrip structures are limited t¥andenbosch and Capelle proposed and applied another MPIE,
planar geometries consisting of only horizontal current cormhich employs two scalar-potential kernels (one for a horizontal
ponents. However, the development of a model for dielectiipole and the other for a vertical dipole) to analyze microstrip
resonators (DRs) coupled to microstrip circuits requires aircuits consisting of both horizontal and vertical current com-
accurate analysis method that is valid for objects of arbitrappnents, but not having both components at the same location,
shape residing on or penetrating into a multilayered mediustch as coax-fed rectangular patch antennas [15].
We observe, however, that due to its vector nature, the

. . . . numerical implementation of the vector potential in a local
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introducing two new nonzero entries, which results in six morgdered is described in Section Il and a system of MPIE integral
scalar integrals, and which impacts the already time-consumiaguations is presented for the problem under consideration. In
process. Thus, our goal is to keep the dyadic kernel of the vec8ction 1ll, the dyadic Green’s functions of the scalar poten-
potential in the simplest form, yet keep the scalar potential fials involved in the integral equations are deduced from a gen-
a form compatible with the original implementation (in termeral form for the vector-potential dyadic Green'’s functions. The
of charge density). derivation of the general form for the vector-potential dyadic
Recently, Michalski and Mosig presented a new MPIE foiGreen’s function is outlined in the Appendix. The cylindrical
mulation where the scalar-potential Green’s functiéf per- vector wave functions used as the modal functions in the deriva-
taining to a horizontal dipole was used throughout; the “scalaon are described in [22, App. C], where some of the relations of
potential” was expressed in terms of the scalar-potential kertieé wave functions, which have not been listed in literature yet,
(K?, V' -J) and a “correction factor{C?, .J.), which avoids are also presented. The properties of the scalar-potential dyadic
the undesirable effect of modification of the vector potential breen’s functions are discussed in Section IV.
not grouping the “correction factor” with the vector-potential The numerical implementation with the MoM is presented
term [16]. A similar work by Montgomery and Wilton can bein Section Il of this paper to analyze the problem of a DR
found in [17] and [18], where the “correction factor” was inexcited by microstrip circuit. In conjunction with the wide-
tentionally left with the “scalar potential” so that the vector-pospread development of wireless information networks such
tential dyadic Green'’s function remained unmodified, while thas cellular, personal communication services (PCSs), satellite
scalar potential was expressed in terms of both charge and @ogmmunication systems, mobile computing, and other new
rent densities. systems and services, monolithic microwave integrated circuits
The objective of this paper is to extend the existing RW@VMICs) have advanced significantly in the past few years.
MoM technique for free-space problems to multilayered medighe primary motivation for developing MMICs in wireless
problems and, specifically, to model DR circuit configurationcommunications such as PCSs is to achieve higher quality,
First, two new MPIE formulations are developed systematicalljpnger battery lifetime, lower cost, and lighter terminals [23].
As usual, the vector potential is represented by a dot product dRs with high-permittivity and low-temperature coefficients
dyadic kernel with the vector current density. Consequently, taee smaller than waveguide or coaxial resonators, are easily
scalar potential, which is related to the vector potential via tligbricated, and are compatible with MMIC implementation
Lorenz gauge, cannot be described with a single scalar kerij2#], [25]. Using DRs, instead of metal cavities, in a multilay-
This is due to the well-known fact that the scalar potentials efed medium coupled to a microstrip line or a slot aperture,
a single point charge associated with a horizontal and vertiediminates the need for microstrip-to-cavity adapters and
dipole in a multilayered medium are, in general, not identicarovides great flexibility to realize complicated bilateral and
[10]. In other words, the scalar potential depends not only enultilayered printed circuits, thus allowing very compact
the value, but also the flow direction of the charge. A static poihigh-density circuit integration.
charge, on the other hand, produces a unique potential. This caWith the advent of the high dielectric-constant and low-tem-
be verified by the fact that the static portions extracted from tiperature coefficient ceramic materials, the applications of the
scalar potentials due to both horizontal and vertical dipoles d&®R in the design of passive and active microwave circuits [26],
equal to each other. A systematic solution for this anisotrodi27] have spread toward low frequencies for mobile commu-
problem is to employ a dyadic kernel to represent the scalar poeations such as PCSs at 1.8-2 GHz. An experimental study
tentials [19], where a dyadic charge density is introduced in tbéa DR, of relative dielectric constant 80 and of resonant fre-
expressions. In this paper, two new formulations of the MPI&uency about 1.7 GHz, coupled to a microstrip line can be found
are proposed in which the scalar potential is represented bing28]. The MoM has been used to calculate the characteristics
double-dot product of a dyadic kernel with the dyadic chargs an isolated DR that is of the body-of-revolution type [29],
distribution. One of the formulations has been found suitabl@0]. This model includes both dielectric and radiation losses.
for penetrating geometries and is easily implemented in a MoNumerical analysis of in-circuit parameters of a DR is more
procedure. In this formulation, the dyadic kernel of the vect@hallenging. Recently, a study of the DR antennas excited by a
potential is kept in the simple form originally developed byoaxial probe or slot aperture has been conducted both in theory
Sommerfeld [20]. The tradeoff is that the scalar potential hasand measurement at the University of Mississippi, University
be expressed with a dyadic kernel. An extra line integral terfi31]-[33], where the theoretical investigations have considered
which is well behaved and nonsingular, will appear when theainly structures consisting of body-of-revolution DRs com-
object penetrates an interface. The numerical implementatiorbiried with wires or slots.
the double-dot product is found to be trivial if one takes advan- The new MPIE formulation developed in this paper is used
tage of the well-established RWG basis functions in which theere in conjunction with the triangular patch model, originally
unknown current density is expressed. One of these two forndeveloped for arbitrarily shaped objects in free space, to
lations has recently been adopted and applied to analyze the gipdel the problem of a DR excited by microstrip circuit. The
cumferential variation of the longitudinal current distributionsumerical procedure has been modified to handle the potential
on a thin-wire antenna protruding through an interface betwedyadic kernels and the dyadic charge density, as described
two layered medium [21]. in Section VI. Section VIl briefly describes a matched-load
The first part of this paper is dedicated to the description sfmulation procedure that has been used to extract the network
the two MPIE formulations. The general geometry to be coy-parameters of a DR microstrip circuit. The diameters of the
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z tegral equations for the unknown currents can be established as
1 follows:

Eie,nC|tan = _Ei|tan7 on Sc (28.)
Eie,nC|tan + Ei|tan = E3|tan7 on Sd (Zb)

On| Eno B

@ Hie,nC|tan + Hz|tan = H(Si|tana on Sd- (20)

d 1 Lo : . . o .

Nt Eer B Embedded Object In (2), subscripts andd denote the exterior and interior regions,
respectively, and superscripts: ands denote the incident field

and the scattered field due to the equivalent curreéhtandsS,
represent the conducting and dielectric surfaces, respectively.

B. MPIE Formulation

d; I £ W [3A'5he fields in (2) can be written as the mixed-potential forms
7 optonal PEC

1
E°=—jwA -V — -V xF (3a)
Fig. 1. General geometry under consideration. 61
H =—jwF -V¢"+ -V X A (3b)
. . . H
Q circles have been also measured to determine the coupllng . . . )
coefficients and the) factors of the DR excited by a microstripW ereA is the mag_netl_c vector potential due to the electric cur-
circuit. The validity of the new MPIE formulation and the®Nt density, and is given as
numerical procedure have been verified by comparing the A
; : . : A= G -J()ds'. 4)
obtained S-parameters with available measurement data in .

Section VIII, and a summary is provided in Section IX. ) o ]
The electric scalar potential is related to the vector potential by

Il PRELIMINARIES the Lorenz gauge to obtain

This section contains the statement of the general geometry ¢ = 2‘7°f - // v.g* Iy ds'. (5)
to be considered. A preliminary description of the new MPIE koriet s

formulations is also presented for the problem under consideraTo deduce the scalar-potential Green’s function, one needs to
tion. The detailed mathematical expressions and the propertiggsform the divergence operator to act on the current density.
of the potential dyadic Green’s functions involved in the intefo do so, it is postulated that

gral equation are presented in the two subsequent sections.

Jw A

V-G (r,v)=V -G, ). (6)

) ) k2 Ll

A. General Geometry Under Consideration oM
The cross-sectional view of the structure under considerati®me can always find a dyadic kern€l® that satisfies (6) al-

is shown in Fig. 1. The medium consistsMfplanar dielectric though it may not be unigue. Equation (6) is a vector equation,

layers, with the layer interfaces parallel to they-plane. The which renders three scalar equations, but there are nine entries

relative permittivity and permeability of the layered medium ari@ G* to determine. It will always be possible to choose some of

given by the tensor the entries as “correction factors” that make (6) hold. Of course,
one would like to have most of the entries to be zero. With a
@ (2) = Lidy(2) + 22, (2) (1) dyadic kernel on the right-hand side, our goal can be achieved.

If instead a scalar kernel is used, as in [12, eq. (12)], in general,
where the subscrigtdenotes components in the plane perpeene would not be able to find a scalar kernel that satisfies [12,
dicular toz, and eg. (12)] without modifying the vector-potential kernel because
there is only one function to determine and it must satisfy all
I, — [1 0} () = { (%) } o (2) = { €.(2) } _ three scalar equations that are rendered from a vector equation.
0 1 ¢ 1(2) ® p.(z) However, if the three scalar equations are identical or similar
(as in free space), the scalar kernel exists. Unfortunately, this is
Itis also convenient to define an anisotropy ratio= o’ /a; ot the case for layered medium where a “correction fadiar”
for the layer. Each layer of the medium, say, itta layer, is a5 in [12, eq. (13)] has to be introduced. However, by using a

IS

assumed homogeneous and is characterized bandc’,,. dyadic kernel and the dyadic identities [35]
The object shown in Fig. 1 is embedded in the multilayerec?/ o o o
structure and may consist of conducting and/or dielectric mate- V-(A-B)=V-A-B+A:VB

rials. The equivalence principle is employed to replace the o¥nd

ject with unknown equivalent surface currents. By enforcing the // V(A B)ds= / A.B.iad 7
s Js

boundary conditions on the surface of the object, a system of in-
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SinceGs, andGj, have the same singular behavior, the line in-
tegral in (11) is well behaved and nonsingular.

Although our objective is to derive the potential dyadic
Green’s functions, it is more convenient to derive the field
counterparts initially because the fields are unique while the
potentials are not. Also, the expressions of the boundary con-
ditions on the interfaces between two layers are more concise
in terms of fields than in terms of potentials. In this paper,
the cylindrical vector wave functions are chosen as the modal
functions for a planarly stratified medium, and the modal
function expansion procedure in [36] is then employed to
derive the field dyadic Green’s functions. The potential dyadic
Green'’s functions are then deduced from the field counterparts.
To conserve space, a general form for the vector dyadic Green’s
function is listed in the Appendix, where only the outline of
the derivation is given. The scalar-potential dyadic Green’s

. o . _ _ _ ~ function will be derived, in the following section, from the
iFr:tgérfzaicel.DEfImtlon oft in the upper medium for a triangle pair penetrating a'beneral expression for the vector-potential dyadic Green’s
function.

To complete the description of the MPIE formulations, it
should be mentioned that similar formulations and conclusions
¢° = / [Ge(r, r) -J(r’)} cadl can bg obtained for the electric vector and magnetic scalar

Ds potentials.

the equation for the scalar potential can be written as

+/ / G(r, r'): V'I(x')ds’ (8)
5 [ll. SCALAR-POTENTIAL DYADIC GREEN'S FUNCTIONS IN A
whereds is the line formed by the intersection of the body sur- MULTILAYERED UNIAXIAL MEDIUM

face and the interface with the layer surface, the unit vetor In this section, the scalar-potential dyadic Green'’s functions

lies in the plane tangential to the surface of the object and is per- . o )
. R . ; I a multilayered uniaxial medium are deduced from the vector-
pendicular tods, as shown in Fig. 2, and; is the unit vector

. : otential counterparts using the Lorenz gauge. The nonunique-
normal to the surface of the triandlé. It should be pointed out P parts 9 Z gaug , uniq
L A . L ! . ness and the properties of the potential Green’s functions are
that the line integral will disappear if the object is confined in g. . ; . T .
. iscussed in the following section. The derivation of the field
smg!e layer. . . . . dyadic Green'’s functions in a planarly stratified medium has
It is proved in the following section that the scalar-potenti

. , : : i Been well documented [36], [37]. In contrast, studies of poten-
dyadic Green'’s function has the following general form: . ; . ; .
tial (especially scalar potential) Green’s functions due to an ar-

_ G, 0 0 bitrary source in a stratified medium have only been presented
G'r,r)=| 0 G 0 (9) in academic journals [12], [19]. These studies have attracted at-
0 0 G tention since the 1980’s due to the development of MPIE numer-

where G is related to the charge density associated with thal procedures. The traditional way to derive potential Green’s
horizontal current component, whit& is related to the charge functions due to an arbitrary source starts by presuming an ex-
density associated with vertical current component. For the tR{ession—either the traditional or alternative form [10]. Here,
ditional formulation,Gs, is a continuous function as both thethe derivation begins with the general expression for the vector
source and field points cross the interface, Wﬁn?m contin- potential in a uniaxial medium so that the vector potential due
uous as the field point crosses the interface, but is discontinud@san arbitrary source in a stratified uniaxial medium can be
as the source point crosses the interface. Using these featuf€gived naturally without any presumptions. Unfortunately, the
the line integral appearing in (8) can be further simplified uposfalar potential, which is related to the vector potential by the
observing that Lorenz gauge, contains a simple polé:at= 0 in the spectral
G T G T %t GO It G s domain. This singularity has to be subtracted, otherwise prob-
=G X + Gy dyy £ Gy iz lems arise in the numerical computations. Two formulations of
=GRd + (G - Gy)J.2. (10) vector and scalar potentials are presented here, which result

Since G5, is a continuous function, the first term in (10) willfrom two different ways of subtracting the singularity. One of
cancel out when the line integral is implemented on the perf8€ formulations is subsequently implemented.
trating edge just above and below the interface. Thus, (8) be-

comes A. General Expressions of Scalar Potentials
b = |:(G€ —G9)J i} adl In a layered uniaxial medium, the scalar potentials due to a
Os v hivz single point charge associated with the horizontal and vertical

dipoles are, in general, different [10], and one cannot calculate
the scalar potentials due to an arbitrarily oriented dipole via an

+ / / Ge(r, ') : VI ds' . (12)
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integral with a single scalar kernéf®. Michalski and Zheng where
[12] chooseK ? to be the scalar potential of either the horizontal

or vertical dipole, and then use a correction functig® in 1 Z 1 /fi?/fi‘c
the vector potential to account for the other part of the scala’t’2 (L+60)r k3
potential.

h * / h
In this section, the scalar potential due to an arbitrarily ori- Z ( 2 2 Yan(p, ki) (', kze) dk,. (17)

ented dipole is formulated in a dyadic form. The scalar poten-
tial is related to the vector potential by the Lorenz gauge, Lo
expressed in (5). Since the divergence operator would make the

kernel more singular, we attempt to transfer the operstte —G¢ = JwG +VViki, +V aa/ kéz = ®* +VV . G*

m (3)—(5), (12), and (14), we have

act on the current density, so that the scalar potential can be ex- (18)
pressed in terms of the charge density. From [22, eqs. (A-§@ereG© is theE-field dyadic Green’s function due to the elec-
and (C-7a)], one can obtain tric current source and
V- GA(I‘, r') :VtGA(r r')+ ; (2 -GA(I‘, r’)) K :ij’A + VV.k5, (19a)
< ras e 551.€
aG?t aGi . G =Lk; + 22k, (19b)
- £+ . (12)
Oz Oz

Substitution of (A-8a) and (17) into (19) yields
In order to transform the divergence operator to the current den-
sity, we attempt to find a dyadi€e, as defined in (6). In view KA /°° 1 Z 1
of (6) and (12),G° can be written as o (148

Z-]rLC(Z’ Z/)

M mtn )mtn( )+ntn(p)n>tkn(pl):| dk!’

G = Likj, + 22k 13
th1 (13) / Ckom
wherek;, denotes the scalar potential of a single point charge 1+60 4
associated with a horizontal electric dipole drfddenotes the ) [ e e ( 2. (p)— Lot (2, 2 )zn(p’ Lt )}
. . . . . . zT z‘r( zn 2T iT( zn\P s Ryr
scalar potential of a single point charge associated with a vertical
electric dipole. Substitution of (12) and (13) into (6) yields -1y, (p )d/f
/ kONt-r 2 AT
; A
i jw  OGY . t-_v K (14a) 1+60)7r Ver Vel
Fottir s 02 e, Pl () (20a)
jw 0G4 0 1 1
4T TEE kS. 14b P = — ——
K3, e, Oz o~ " (14D) ki, = /0 k3 zn: (1+6p)m
Using (14) with (A-8a), (A-5), and [22, eq. (C-7)], we find that {k“f@ < (20 2 nan(p)n, (0)
k5, andkS may be written as k
kh kh
oo e ke — E 7l Ynen(p, K (0, B |d
’ 1 k,.‘rkzc k2 T\ 2n\Py Far ) an\Py Rz 4
Ky =— = Z I+ p
’ )7 (20b)
Zg (=, )nm<>r (p)dk (15a) k;:_/ Iy 1 LK
o Ky 4 (14+b0)m vee kS
-/ W B AT Zng2, e () () (20¢)
< Zr (2, 2y (p)nl, (p') dky, (15b) By duality, we have
wherewv, . is the anisotropy ratio for the permittivity in th@h -G =KF VvV .G" (21)

layer and other parameters are defined in the Appendix.

A close examination of (15a) reveals thgl; has a pole at whereG" is the H-field dyadic Green’s function due to the
k, = 0. The various ways to subtract the pole will lead to folmagnetic current source and
lowing formulations.

) G™ = Lk + 22k, (22)

B. Formulation A

In order to subtract the pole &f,; atk, = 0, one can assume The expressions foK*', k', andk™ are similar to those for

K4, k§, andke given in (20), but have been omitted for brevity.
ki, = ki1 — kio (16) The full expressions can be found in [22].
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C. Formulation B source or field point crosses an interface in Formulation B. In
An alternate way to subtract the polegf, atk, = 0 is to view of (3), durir!g the testing procedure, one may prefe.r to
assumek:, to be given by transfer thg grad!ent operators to act_ on the testlng.functlons.
If Formulation A is employed, no additional contour integrals
2 A A appear during the testing procedure.
ko = / = Z 1o Tk It is worth noting that the double-dot product in (11) will re-
0 r (14 o) KJKE, duce to a scalar productdf, andGy, are the same. Actually, by
Zge(z, A nan(p)nl, (p') dk,. (23)  properly choosing:s, in (16) or rearranging (18), one can de-
rive a scalar Green'’s function fg . Unfortunately, it will result
Substitution of (A-8a) and (23) into (19) yields in more nonzero entries in the vector-potential dyadic Green'’s
function.
=4 [T 1 I ' % 7 4 The numerical implementation of Formulation A, in conjunc-
K= /0 k_,, zn: (1 + b6o)m Zrc(zs 2 (p)my (') dky tion with the triangular patch model, is given in the second part
of this paper. For the sake of efficiency, the implementation of

2] 1 1 k.? 1! ] ) - :
+ / T Z 156 OII; ?727 the vector potentials is conducted in a local coordinate system
0 P n 1+ o) (ke) [13], which results in three integrals over the source triangle.
- Zg (2, 2 e (p)ny, () dE, The three integral kernels are, respectivélJiK, &, K+, and

K. In Michalski’s Formulation CK** contains seven nonzero
entries, which results in a total of 21 scalar integrals for the
vector potentials, plus one for the scalar potentials, and they all

Ver Vel

+/Oo 1 3 1 Kpg,el, #2%¢
0 kp o (1 + 60)7r k/%

YE (2 A men (o), (o) dEp (242)  are singular. With Formulation A presented in this pajiéf:
e e 1 Z 1 kS, contains only five nonzero entries, which results in a total of 15
Mk (L + 80)7 ver ke, scalar integrals for the vector potentials. The tradeoff, as will be

n

stated in the second part of this paper, is that an extra scalar in-
tegral, which does not occur for objects in free space, appears
. — . . . for the scalar potentials. Furthermore, a line integral along the
The expressions foK" and k' can again be obtained from o etrating edges will occur when the object penetrates the in-
duality and are provided in [22]. The scalar potentigsand g ces. However, these two integrals are nonsingular and well
k' ofasingle charge assoc_:lated with vertical dipoles are in the o ed. As can be seen from the above analysis, Formulation
same forms as in Formulation A. A presented in this paper is more efficient, but one may need
to add a code segment in the preprocessor to keep track of the
IV. Discussion penetrating edges, and one may also need to add a subroutine to
Two formulations have been derived systematically in tHerry out the line integral.
previous section. It is worth noting that the vector-potential
dyadic Green’s functions in Formulations A and B are, re- V. APPLICATIONS
spectively, in the traditional and alternative forms [37], and . L
here, we simply derive them in a different way (from a generd PR Coupled to a Microstrip Line
expression). In order to keep the vector potential in these twoOne specific configuration of interest in this paper is that of a
simplest forms, a dyadic charge density is introduced, and th& coupled to a microstrip line. A DR in a multilayered medium
scalar potential is represented by a double-dot product oftaupled to a microstrip line can be used whenever a resonator
dyadic kernelG¢ or G™ with the dyadic charge density. Inis needed in a microstrip circuit. In theory, the resonant fre-
Formulation A,G¢ and G™ involve all of the four Green’s quency can be determined by the resonant mode, dimensions,
functions of a multisectional transmission line, ahfl and and permittivity of the DR along with the circuit environment,
k;* are continuous as both source and field points cross thed the coupling coefficient can be adjusted by varying the dis-
interfaces, whilek$ and £7* are continuous as the field pointtance from the DR to the edge of the microstrip line. In practice,
crosses the interfaces, but discontinuous as the source pbmwever, the exact in-circuit resonant frequency cannot be pre-
crosses the interfaces. In Formulation@®; and G™ involve dicted precisely due to the thermal expansion and the dimension
only two of the four Green’s functions of the multisectionalolerances of both the resonator and microstrip line. A simple,
transmission line, an@l; andk7* are continuous as the sourcebut effective tuning mechanism was introduced by Buer and
point crosses the interfaces, but discontinuous as the fi@#Sharawy [38], where a nonresonant section of a microstrip
point crosses the interfaces, whilg andk?* are continuous as line was employed to adjust the resonant frequency by offset-
the field point crosses the interfaces, but discontinuous as tivey the resonator with respect to the center of the tuning line.
source point crosses the interfaces. When the embedded obj&bis position of the DR with respect to the microstrip feed line
are confined in a single layek; and k}* are, respectively, is also crucial in order to excite the desired mode. Thorough
equal tokS and k] in Formulation B. In general, the dyadicstudies of different modes of DRs have been conducted in the
Green’s functions of the scalar potentials involved in (8) af@epartment of Electrical Engineering, University of Mississippi
discontinuous as the source point crosses the interfaceq2d]. The studies have been continuing in both experimental and
Formulation A, however they are discontinuous as either tkleeoretical aspects in order to attain sufficient knowledge about

(s 2 V() (005, () s (24b)
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Fig. 3. Geometry and mathematical models of a DR coupled to a microstrip microstrip line

line. (a) Geometry of a DR coupled to a microstrip line. (b) Equivalent problem
for the interior region. (c) Equivalent problem for the exterior region.

©

the frequency response ofaDR coupled to microstrip circuit ffg- 4. Mathematical models of a DR c_:oupled a slot aperture. (a) Geometry of
a DR coupled to a slot aperture. (b) Equivalent problem for the upper half-space.

a Variety of circumstances. (c) Equivalent problem for the lower half-space.
In practice, the two lowest modé&&.; s andHEM;;s have
been used primarily [24]. The former has a high unloadegtioned on a substrate supported by a perfect electric conductor
quality factor and remains the primary choice for resonator Ug8EC) ground plane with a slot aperture. On the other side of the
in a microstrip circuit, while the latter is a strong radiation modeEC ground plane, a microstrip line is extended to the area be-
and has been selected as an antenna [31]. The configurationy@sth the slot. The DR is excited by coupling through the slot to
coupling of theTEq1s mode to a microstrip line is shown inthe microstrip line where the source voltage is applied. Again,
Fig. 3(a). In accordance with the surface equivalence prinCipiter applying the equivalence principle at the slot, the original
[34], the original problem can be divided into two problemssrophlem can be divided into two equivalent situations. Fig. 4(b)
Fig. 3(b) illustrates the equivalent problem for the regioiystrates the equivalent problem valid in the upper half-space
interior to the surface of the DR, where the homogeneous space. (. This problem is similar to the problem of DR with di-
Green's function is employed through potential functions tR.ct excitation, except for the presence of the equivalent mag-
represent the field quantities. Fig. 3(c) illustrates the equivalaqétic curreng™ just above the original slot area. It should be
problem for the region exterior to the surface of the DR, whefghderstood that the physical slot has been shorted in the equiv-
the multilayered medium Green’s functions are used in termggent problem. Fig. 4(c) illustrates the equivalent problem valid
of appropriate potential functions to express the electric aflthe |ower half-space < 0. This problem is a typical mi-
magnetic fields. By enforcing the boundary conditions th@kostrip-line problem, except, of course, that the physical slot
the tangential components of the electric field must vanish gas peen replaced by the equivalent magnetic cudrent Ac-
the conductor surface, and that the tangential components:gding to the boundary condition that the tangential compo-
both the electric and magnetic fields must be continuous acregt of the electric field is continuous across the slot, we have
the dielectric surface, a system of integral equations can pe— — _jm+_ The two equivalent problems are then coupled
established to determine the unknown equivalent curi@nts \ith each other by enforcing magnetic-field continuity across
andJ™. This system of equations can be found in (2). the slot, and a system of integral equations can be established
to determine the unknown equivalent currents. This system of
B. DR Coupled to a Slot Aperture equations is given by (2), except that the electric fields on the
Another specific configuration of interest in this paper is thahicrostrip conductor surfacé. should include a subscript
of a DR coupled to a slot aperture. Fig. 4(a) illustrates the g denote that the parameters of the lower half-space are used,
ometry of a DR coupled to a slot aperture. This implement#ie exterior electric and magnetic fields on the DR surféige
tion can be used to realize bilateral microstrip circuits and ulshould include a subscrigf to denote that the parameters of
mately allows more compact circuit integration. The DR is pdhe upper half-space are used, and an equation must be included
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to enforce continuity of the tangential magnetic field across tlenploying a Galerkin testing procedure, a partitioned matrix

slot aperture surfacg, equation can be obtained as follows:
Hiliy ~ Hilay =0, 0N S, (25) A N N
(Za:] [Zad) [=zal |- | el | = [0] (28)
(231 Zar] lzad™ [£q"] [0]

VI. NUMERICAL PROCEDURE

where subscriptsandd denote, respectively, the microstrip line

Here, the MoM [39] is employed in conjunction with the POand DR, while the superscriptsandm denote, respectively,

te_ntial dyadic _Green’s functions given by (19) an_d (20)_ a'o_”t%e electric field or current and magnetic field or current. The
with their duality counterparts to solve the DR microstrip Cirslements ofz<e], (23], [Z5¢], and[Z<5] are given in terms of
ss sd 1 dsl dd

cuit problem. In the numerical procedure, the triangular pat tential functions as

model developed in [13] is employed. The procedure is modi- . .

fied to handle the potential dyadic kernels and the dyadic char%ee .y [jw <A+ ] pm LA Pm ) bgee = (/)eﬂ '
density. As the first step of the numerical process, the surfaceg™ ! mne2 2 mne Tmn

of the objects embedded in the multilayered media are approxi- (29)
mated by a set of planar triangular patches. The equivalent 51[1{1

face currents are then expanded using basis functions defined
on triangle pairs with the unknown coefficients corresponding ... ; F <V « A Dot LV X A- &)}

elements ifZ7:¢] and[Z7°] are given as

to the common edges. The charge density discontinuity that mayZ"m - mn g mn g
exist at an interface is accounted for by the line integral in (11). (30)
Testing functions are then chosen to enforce the integral equa-

tions on each triangle pair, which reduces the integral equatibh(29) and (30), the potentials are given by

into a system of linear equations or, in more compact form, a — .

matrix equation. In order to extract tifeparameters of a mul- AL = //S K- £ (r) ds’ £ (i1 2)°

tiport microstrip circuit, a matched-load simulation [4] is used,

which results in modification of th&-matrix. Once the matrix / (k5 (r, x') = ki (e, )] dI' - (31d)
equation is solved, th8-parameters can be evaluated from the 9=

current standing-wave patterns. pE = / / Ge(r, v'): V'EE(r') ds'. (31b)
A. Triangular Patch Model The elements idZ<7], [Z57], and[Zy™] are easily obtained

Following the RWG procedure [13], the surfagef the ob- in terms of the electric vector potential and the magnetic scalar
ject is modeled by planar triangular patches. The unknown cypetential by duality. Details are given in [22].
rent density is then expanded on triangle pairs as In the normalized area coordinates system, the magnetic
vector potentiaA = =~ associated with a pair of triangles can be

mn

represented as

N
Ir) =Y Lfa(r) (26)

n=l1 A,j,:m =In [T1 -(ro —r1) +1- (r3 —ry) +1I- (ry — I‘m)}
where N is the number of interior edges and thgs are the o e en
unknown coefficients to be determined. After representing the +(-2) /a (ki — k) dl” (32)
basis functiorf,, associated with theth edge in the local co- o

ordinate system [40], the dyadic charge density associated wiiere

the basis function can be written as I, - // ¢ KA de, dé
1 T,
Vi = £ (Voo = Vénoilon) _ _
hn L- [ eR'aga
1 1 =~ 1 =~ Ty
=+ hypyilo1 — h, 11, 1) (27) _ _
B, <hn+1 * 1 * = / / KA de, des.
whereg,,’s are the normalized area coordinafgss are sequen- _ _ T:i _
tially oriented vectors forming the triangle edges, and = After some manipulationsy;;;, can be written as

1, x 1, h,, is the height of the triangle with respect to thth et .

edge, and the subscripts are counted modulo three {g5.05 Prn = //T Ay

andl, = I;). Thus, as can be seen in (27), the dyadic charge " X X

density can be written in a simple form in terms of the parame- <— hytilp1 — — hn11n+l>
. hn-l—l hn—l

ters of the triangular patch.

n

1
’-ff:Fh—;?;?:
1

. (kg — k)| déy d&s. 33
B. Implementation of the MPIE (*, ")} b1t (33)
For the problem of a DR coupled to a microstrip line, upoBimilar equations in terms of normalized area coordinates for

using the expansion for the surface current densities in (26) afii,, and ™+ can also be obtained. We observe, from (32),

mn
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that an undesirable line integral appears when objects penetrat
interfaces. However, this line integral and the additional integral § —
due to the second term of (33) are of scalar type and nonsingular ’
The extra effort in evaluating these integrals is well worth the
cost in order to keep the three dyadic integrals in (32) in the L
simplest forms. For a planar microstrip circuit; and1; are

output reference plane

normal toz, thus the second term of (33) disappears. i
For the problem of a DR coupled to a slot aperture, upon using ’ | POLY
the expansion for the surface current densities in (2) and (25) input reference plane | e

and testing the resulting equations With a partitioned matrix
equation can be obtained of the form

[ZseseL [ZSZ"L [0] [0] 1 [Ise] Fig. 5._ Matched output port with MLS applied on the triangle edges denoted
Z) (Zoy + Zow) =Zu) (Zag)| || Yeerdines
(0] (—Z&au Zaaw]  [Zaaw [£4] S-parameters of a multiport microstrip circuit as long as the ref-
[0] —Z5] Zry)  Zygld LI erence planes are specified far from the discontinuities. This can
r[Vi] be done by extending the physical lengths of the feed lines and

[0] exciting the input port with all output ports matched so that the
(34) incident, reflected, and transmitted waves can be identified. In
(0] the MoM procedure, the excitation can be modeled witkgap
L [0] voltage source, while the matched outputs can be simulated by
enforcing in the space domain a unidirectional current traveling
where the subscripts a, andd denote, respectively, microstripWave propagating in the direction away from th_e discpntinuities.
line, slot aperture, and DR, and the subscriptand L denote, This procedure is known as matched load simulation (MLS).
respectively, upper half-space and lower half-space, while thBis simulation procedure results in the modification of matrix
superscripte andm denote, respectively, electric field or cur-equations (28) and (34). Two simulation methods have been pro-
rent and magnetic field or current. The elements oZhmatrix Posed in [4]. The first method enforces a traveling wave with
are given by the same equations as those for the problem ¢iaplitude equal to one on the output port, while it leaves the
DR coupled to a microstrip line, provided that the correspondirigdap voltage source to be determined. This method requires
upper or lower medium parameters are used. one to rearrange the matrix equation, and the rearrangement is
Due to its dyadic nature, the implementation of the potentiélHite tedious for a multiport network. The second method de-
Green’s functions is very tedious. However, the computationggribed below is more suitable for multiport microstrip circuits,
effort is greatly reduced since the kerels of these functiol¥!s, it is employed here. For a narrow output line, as shown in
are the transmission-line voltages and currents that satisfy ffig- 5. if j denotes an edge where the traveling-wave constraint
transmission-line equations (A-5), and furthermore, by dualiti? to be enforced, the simulation can be done by introducing new
ypc(Z’ 2’y andT? C(z7 2') can be obtained by replacing all thdinear equations into the matrix equation of the form
charactenst_lc mpedance@ V\//Ith their reupr/ocatg?.“ (charac- 1o _ge emifals _ (35)
teristic admittance) i? .(z, 2') andZ} (2, 2’), which results 55 T Ts(i+1)
in changing the signs of aII_ reflection coeﬁ_‘|C|ents. also, in Qrd%hereﬁg is the transmission-line wavenumbarjs the length
to speed up the computation of the dyadic Green’s functionsy gy, een edge, and the next constraint edge. With the new

general three-dimensional interpolation model has been devg|a g, equation, thgth row in theZ-matrix becomes
oped [41]. The interpolation model seledtsvertical planes to T

be tabulated and then interpolates between them. All the grid [0 -+ 1 —e9%L o ... 0] (36)
values on the same vertical plane can be tabulated by a single

subroutine call, which saves the overhead due to the stack rce the modified matrix equation is solved for the current dis-
nipulations necessary for subroutine calls and the overhead #ilution, the S-parameters can be extracted from the current
to the recomputation of the quadrature coefficients, the Bess&nding-wave patterns.

functions, and the transmission-line parameters.

B. @ Circles
VII. C|RCU|T PARAMETER EXTRACT|ON The equivalent Circuit for é[‘EO]JS mode Coupled to a mi'
. crostrip line is shown in Fig. 6. The loci of,, for different
A. Evaluation of the5-Parameters values ofd form one or more distinct circles on the Smith chart,

The feed lines of a microstrip circuit support only hybridvhere z;, is the normalized impedance in the symmetpy
electromagnetic (HEM) waves. For moderately low frequencigéane, and! is the distance from the edge of the DR to the edge
(w <« Aandh <« ), the HEM field has negligibly small longi- of the microstrip line. These loci are callédcircles [43]. For
tudinal components [42]. With this quasi-TEM assumption, thehigh-€2 resonator circuit, the loci move considerably faster in
traditional transmission-line theory can be used to evaluate the vicinity of the resonant frequency. For a particular value of
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Fig. 6. Equivalent circuit of &'Eq;s-mode resonator coupled to a microstrip

line. (a) Actual configuration. (b) Equivalent circuit. Fig. 7. S-parameters of @E,;s-mode resonator coupled to a microstrip line

with d = 0.

d, the diametetl.. of a () circle determines the coupling coeffi-

cient DR antenna. Numerical results for this case are computed with

the approach presented here and are compared with available
d, measured data [46]. All the numerical computations are per-
(37)  formed with the Trans-Tech resonator made of D8600 material
(e, = 80), and having a diameter of 22.99 mm and a height of
Critical coupling(x = 1) occurs when the diameter of tli¢ 10.34 mm.
circle is equal to one. For this case, the power dissipated in thel) DR Coupled to a Microstrip Line:The geometry and the
resonator is equal to the power delivered to the external circuidyuivalent circuit for coupling of th&E; s resonator mode to
The loaded quality factor can be determined by the followirg microstrip line are shown in Fig. 6. The substrate is Rogers
equation: RT/Duroid 5880 of thickness 1.59 mm and the relative dielectric
constant is 2.2. The width of the microstrip line is chosen to be
4.8 mm to achieve a 5Q-characteristic impedance. This struc-
ture has been previously investigated experimentally by Kajfez
and Guo [28]. Numerical results are computed for comparison.
where fy is the resonant frequency, and f, are the frequen- In the numerical procedure, the microstrip line is extended to
cies corresponding to the preselected angleand¢, counted identify the incident and reflected waves, and the DR is modeled
clockwise and anticlockwise from = 0 at the resonant fre- with 880 triangles. On the bottom and the top of the dielectric
guency. cylinder, four triangles are employed for the innermost circles,
while 64 triangles are used for the outermost rings.
VIII. N UMERICAL RESULTS The coupling coefficient and the loadénfactor can be reg-
lated by changing the distance between the DR and microstrip
e. Ford = 0 mm, the numerical results for tht&-parameters

1 fo

QL:§f2—f1

(tan ¢o — tan ¢y ) (38)

For validation, several examples have been computed

pr:anar mlcrqstlr_lp cwcunls, s_uc24asbthe :]llter exan?ple in [4] 8NGre shown as functions of relative frequerfoyfo in Fig. 7. The
the microstrip line coupler in [44], but these results are omitt mputed resonant frequency fis = 1.6928 GHz, while the

for brevity. The e>_<ar_nple of a (_1ipo|e antenna Ioenetr‘F"tingrfrileasured one i = 1.7037 GHz, thus, the difference in the
half-space dielectric interface with an gngle was also_Consﬂ%'sonantfrequencyis 0.64%. The standing-wave patterns for the
ered., and our results were found to be in agregment with th‘%ﬁﬁrent at three different frequencies on the microstrip line are
published in [45]. These results are presented in [41]. shown in Fig. 8. One observes from Fig. 8 that the current dis-
tributions remain approximately constant at the output port due
to the effect of the matched load, while they vary significantly
The traditional way of coupling a DR to a microstrip circuitat the input port due to the equivalent impedafget L = 0.
is to place the DR beside a microstrip line that is connected toFor cases in whicl is varied from 0 to 6 mm, the computed
the microstrip circuit. A theoretical study of such a DR couplednd measured resonant frequencies, as well as the percentage
to a microstrip line is first conducted. The numerical results adifferences between them, are summarized in Table |. The com-
then compared to available measured data [28]. A novel tunipgted coupling coefficients and tlig factors are computed by
mechanism [38] is also investigated numerically. The secotfte program QZERO in [43]. The results are summarized in
case studied in this section is a microstrip-line aperture-coupl€able II.

A. DR Coupled to a Microstrip Circuit
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Fig. 8. Current distributions on the microstrip line.
TABLE |
RESONANT FREQUENCIES
d (mm) Numerical f, (GHz) Measured f, (GHz) A

0 1.6928 1.7037 0.64%

1 1.69255 1.70336 0.63%

2 1.6923 1.7029 0.62%

3 1.69215 1.7026 0.61%

4 1.69207 1.7024 0.61%

] 1.6920 1.7022 0.60%

6 1.6919 1.7020 0.59%
B. Tuning DR equivalent series impedancg, for different values ofs are

A novel tuning mechanism introduced by Buer anghown in Fig. 10 and the variation of the r_esonant frequency
El-Sharawy [38] is investigated numerically next. The tec2nd the unloaded quality factor as a function of the offset
nique, as shown in Fig. 9, employs a nonresonant section o Shown in Table Ill. For a DR with a resonant tuning line,
microstrip line to modify the resonant frequency. The reactanf# numerical results for the equivalent series impedaice
added to the resonator can be adjusted by simply changfﬂ different values of are shown in Fig. 11 and the variation
the offsets of the tuning line with respect to the center off the resonant frequency and the unloaded quality factor as a
the DR. A nonresonant tuning line was employed to avolynction of the offsets are shown in Table IV.. It can be seen,
significant ¢ degradation, although it provides less tunin§©m Tables llland IV, that the unloaded quality factor of a DR
range than a resonant line does. In the numerical computati$fifh @ resonant tuning line is much smaller than that of a DR
DRs with both nonresonant and resonant tuning lines e%th a nonresonar_n tuning line. That is because the radiation
investigated. The nonresonant and resonant tuning lines ard2Sf Of the former is much larger than that of the latter.
lengthsl, = 96.75 mm (approximately3/4\, ats = 0) and
I, = 62.5 mm (approximatelyl /2, at s = 0), respectively, C- DR Coupled to a Slot Aperture
and both are of characteristic impedardtg= 50 €2 with both The geometry for coupling of thHEM ;s resonator mode
ends open. The parameters of the DR, microstrip feed lirte,a slot aperture is shown in Fig. 4(a). The substrate on which
and substrate are the same as in the previous case. For atBdRmicrostrip line is etched is Rogers RT/Duroid 5880 of thick-
with a nonresonant tuning line, the numerical results for theess 1.575 mm and the relative dielectric constant is 2.2 with
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TABLE I
COUPLING COEFFICIENTS AND() FACTOR
Numerical Measured
d(mm) o, K [ Q.. Q K [0 0.
0 266 2.13 831 390 297 4.65 1679 361
1 327 1.48 812 549 391 2.99 1561 522
2 392 1.07 811 758 507 1.96 1502 765
3 453 0.775 803 1036 617 1.30 1420 1092
4 511 0.570 803 1409 717 0.998 1433 1436
5 560 0.428 800 1869 810 0.740 1410 1904
6 595 0.323 788 2440 920 0.524 1402 2677
: t TABLE Il
; 7N ) I RESONANT FREQUENCY AND UNLOADED () FACTOR OF ADR WITH
A \_// NONRESISTANTTUNING LINE
l."' \SFQJ s (mm) Resonant frequency (GHz) Unloaded Q factor
- sk W 0 16959 939
R /l w
/ 6.45 1.69565 926
e > 129 1.6044 892
P T
19.35 1.6932 896
Fig. 9. Tuning DR. 25.8 1.69212 822
3225 1.6916 805
300
s=0mm
"""""" s=12.9mm 1 TABLE IV
"""""" s =258mm | RESONANT FREQUENCY AND UNLOADED () FACTOR OF ADR WITH A
200 It \ P REAL RESONANT TUNING LINE
! \ B 5
€ i N s (mm) Resonant frequency (GHz) Unloaded Q factor
= N
% 100 i 0 1.6959 448
S - 6.45 1.69565 429
o P
3 T T T T 129 1.6944 433
E or
19.35 1.6932 436
IMAG. "' 25.8 1.69212 450
100 F 3225 16916 an
200 . - ; ; The resonant frequency and input resistance oHtR&1;
1.688  1.690  1.692 1694 1696 1.698 1700  mode can be controlled by changing the thickness and permit-
f (GHz) tivity of the substrate on which the DR resides. For the case in

Fig. 10. Z, of a DR with nonresonant tuning line as a function of frequenc

fors = 0,s = 12.9 mm, ands = 25.8 mm.

microstrip antenna of similar size.

whicht, = 0.79 mm with ¢, = 2.5, the numerical results for

the series equivalent impedanggare shown in Fig. 12 and the
numerical results are compared with measured data from [46].
The measurement was performed on the same geometry, except
loss tangent 0.0004. The width of the microstrip line is choséhat the substrate on which the DR resided was replaced by a di-
to be 4.5 mm to achieve a 30-characteristic impedance. Theelectric spacer of diameter 22.99 mm with the same permittivity
parameters of the DR are the same as in the two previous casesl thickness. As can be seen, reasonable agreement has been
The ground plane has a 23 2 mm rectangular aperture thatobtained. A possible reason for the differences could be due to
provides the excitation for thHEM;,5s mode in the DR. This the infinite ground-plane model and the surface waves that are
structure is primarily used as an antenna to achieve wider baedeited in the numerical models. The surface waves are absent
width and higher power-handling capability, as compared with the measurement model because the substrate (a spacer) does
not extend beyond the DR. It should be noted that the resonant
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Fig. 12. Z, of anHEM,,s-mode resonator coupled to a slot apertage=£ 0.79 mm, e, = 2.5). (@) Measured data from [46]. (b) This method.

frequency obtained with the numerical model is within 3% of IX. CONCLUSION
the measured result.

For the case in which,, is varied from 2 to 2.5, results for In this paper, a new MPIE formulation has been developed
the series equivalent impedanZe as a function of frequency for the analysis of electromagnetic problems due to conducting
are shown in Fig. 13. As the permittivity of the substrate oor dielectric objects of arbitrary shape embedded in a planarly
which the DR resides increases, the electrical length of the sédtatified medium. In the new MPIE formulation, the dyadic
increases, thus, th#EM; ;s mode is more strongly coupled. Forkernel of the vector potential is kept in the simple form origi-
the cases in whichy, is varied from 0.79 to 1.59 mm, results fornally developed by Sommerfeld, yet the scalar potential, which
the series equivalent impedange as a function of frequency is represented by a double-dot product of a dyadic kernel with
are shown in Fig. 14. a dyadic charge density, remains compatible with the original
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300 coefficient and@ factor of the TEy;s-mode DR have also

] been evaluated. The validity of the new MPIE formulation and
------- (© the numerical procedure have been verified by comparing the
obtained S-parameters with available measurement data. It
is worthwhile to mention that, as demonstrated by the cases
of a thin-wire antenna partially buried in the earth and sea
[41], [45], [47], the new MPIE formulation and the numerical
procedure are valid and well suited for objects penetrating an
interface between two media.

200

150 [

100 [

Impedance (chm)

50

v APPENDIX
] GENERAL FORM OFVECTORPOTENTIAL DYADIC GREEN'S
FUNCTIONS

-100 : : ' . ' : ; : In an anisotropic space, different field components are, in
general, coupled together, which makes the solution extremely
f (GHz) tedious. Fortunately, in a uniaxial stratified media, the longitu-
Fig. 13. Z, of anHEM, ;s-mode resonator coupled to a slot apertare<£ dinal- a.nd transverse-fleld_components can be_decoupled. By
0.79 mm). (Q)era = 2.5. (b) €ya = 2.25. (C) €ra = 2.0. expanding the transverse fields into modal functions, the trans-
verse-field equations can be reduced to two simple transmis-

) ) ) o sion-line equations along thedirection. One of them is for the
triangular patch implementation. When it is represented ¥t odes. the other is for the TM modes.

the local coordinate system, the dyadic charge density canrphe modal functione,,, andh,,, must be complete and or-

be written in a simple form in terms of the orientation anghqoqonal to each other. They represdiit. and TM, compo-

shape of the triangle. Thus, the numerical implementation Hénts, respectively. The orthogonalityegf, andh,,, can be ex-
the double-dot product is trivial if one takes advantage of ”ﬂﬁessed as

well-established basis functions in which the unknown current

density is expressed. This new MPIE formulation is valid e, X 2 =h,,

for electromagnetic problems in an inhomogeneous and/or and(en, ef,) = (hy,, h?,
anisotropic medium, provided that the correct dyadic kernel | 5« p, —e,,

is employed. As presented in [48], the and H-field dyadic (A-1)
Green’s functions have been derived for many classical elec-

tromagnetic boundary problems. However, the potential dyagifie completeness criterion is guaranteed if one of them is

Green'’s functions for most of these problems still remain UR4|enoidal and the other is irrotational [36] as follows:
known. The new MPIE formulation is derived from ti& and

H-field dyadic Green'’s functions based on a general expression { V x ey, =0

y=1.

of the vector-potential dyadic Green’s function. Thus, once V- -h,, =0. (A-2)

the F- and H -field dyadic Green’s functions are available, the

derivation procedure for the MPIE formulation presented iRor a planarly stratified structure, cylindrical vector wave func-

this paper can be applied for many of these boundary problertisns are good candidates. The transverse components of the

In summary, the derivation of the new MPIE formulation i$olenoidal functions satisfy (A-1) and (A-2), as is proven in [22,

systematic and the numerical implementation is efficient, yetAlpp. CJ.

remains compatible with the original procedure. The transmission-line equations for the expansion coeffi-
The new MPIE formulation has been employed in conjungientsV,, andI,, in either the TE or TM case can be derived as

tion with the triangular patch model, originally developed fo[36, p. 747]

arbitrarily shaped objects in free space [13] to solve a DR

microstrip circuit problem. The numerical procedure has been _an(z) . i
modified to handle the dyadic kernels of the potentials and the dz Jkarzrdn(z) + vn(z) (A-3a)
dyadic charge density. In order to extract thigparameters of a _ dl,(z) . . )
DR microstrip circuit, an MLS [4] has been used, which results dz JharyrVn(2) + n(2) (A-3)

in modification of theZ-matrix. Once the matrix equation is )
solved, theS-parameters can be evaluated from the curreWpe"_e'for_TM modes, the propagatlon constanand the char-
acteristic impedance. are defined as

standing-wave patterns. The diameters of ¢heircles have

been measured to determine the coupling coefficients and 1 ke

the @ factors of the DR excited by a microstrip circuit. The Zp=— ==
numerical results of current distributionS;parameters, and Yr  War
equivalent serial impedances forl&y;s-mode DR coupled ke = fr /kf _ 2
to a microstrip line and atIEM;;s-mode DR coupled to a - €xr T

slot aperture have been presented and discussed. The coupling k2 =w e, (A-4a)
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Fig. 14. Z, of anHEM,,s-mode resonator coupled to a slot apertutg (= 2.5). (a)ty = 0.79 mm. (b)t, = 1.19 mm. (c)t, = 1.59 mm.

while for TE modes YZ (2, 2') =YL (Y, 2) (A-6b)
w1 Th (2 ) = =127 2). (A-60)
Ty H
[ I e The derivation ofZZ (=, ') has been conducted in [12],
N e 27 P [36]. Once it is known, the remaining three transmission-line

(A-4b) Green’s functions can be found from (A-5) and (A-6) im-
mediately. The£- and H-field dyadic Green’s functions can
In order to solve the transmission-line equations (A-3) for t¢ €asily found in terms of the transmission-line Green’s
voltageV () and currentl(z), it is convenient to introduce the functions. From Maxwell's equations and t,he Lorenz gauge,
voltage and current transmission-line Green’s functions, whiéh9eneral expression of the dyadic Green's function for the

2 2
kQ-;— =W oy

are defined as magnetic vector potential in a uniaxial medium can be written
as
TP (2, 2
S ) e ryr (o, ) - (- ) (ASR) R
dwdz , G = Gatt + GAat + G222 (A-7)
CIEEDD) e ey () (A-5b) _ .
g dz where the subscrigtdenotes components in the plane perpen-
— 7P (2, ') = — kL ALTE. (2, 2) (A-5c) dicular toz. '
fflz Based on the expression of (A-7), a general form of the mag-

—— TP (2, 7)) =—jkE Y2 ZP (2, 2') — 6(z — ') (A-5d) netic vector-potential dyadic can be derived from the field coun-
dz " terparts as

where the superscript denotes: or A, while the subscripts

and ¢ denote the observation and source layers, respectively. GA__ e 1 1 1
ZF (z, 7'y andT?_(z, #') denote the voltage Green’s func- Jo K zn: (14 6o)m jw
tions due to the current souré®(z’) and the voltage source ot o “ () dk
vP(2'), respectivelyZ?. (z, 2') andYZ(z, ) denote the cur- ' Ts’c(j’ 2 )myn (pymi,, (0) "
rent Green’s functions due to the current soufte’) and the B / 1 ) I kgpire, 22
voltage source?(z'), respectively. o kp & (1+éo)m jwk; v
The transmission-line Green’s functions defined in (A-5) sat- CTE (2, nan(p)nl, (0)) dke
isfy reciprocity properties whekf andz? are either constant or A " o .
i 1 1 kOI“Lt‘rGZ‘r R
z dependent [36, p. 194] + - Z i
o kp & (I+éo)m  jwk) verve

7 (2, &) = Z2.(7, 2) (A-62) YE (2, (o0, (o) db,- (A-82)
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Similarly, a general expression of the electric vector-potentiajio] K. A. Michalski, “The mixed-potential electric field integral equation
dyadic Green’s function can be written as

_ > 1 1 1
oo [Ty
y By 2 5 o

Y (2 2 mun (o), () d,

_/OO i Z 1 k%é‘rulz‘r y‘]rL
o ko & (1+60)m Jwk2 v

. Th

vTS

(2, #Yn(p)ni, () db,
k3ereitr YRyl

where

<1 1
+] - .
/0 k, zn: (1+60)m  jwk2  vurvue
2 (2, () () b, (A-8b)
n.(p) =n.(p)2. (A-9)

It is worth noting thatn,,(p) is also a function of.. In a
uniaxial mediumk¢ andk” are, in general, not identical as in-
dicated by (A-4). Sinca,(p) represents a TM wavég is as-
sumed unless an explicit expression is givemag, k).
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