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Abstract—A new mixed-potential integral-equation (MPIE) for-
mulation is developed for the analysis of electromagnetic prob-
lems due to conducting or dielectric objects of arbitrary shape em-
bedded in a planarly stratified medium. In the new MPIE formula-
tion, the dyadic kernel of the vector potential is kept in the simple
form originally developed by Sommerfeld. The scalar potential,
which is related to the vector potential via the Lorenz gauge, is
then represented by a double dot product of a dyadic kernel with a
dyadic charge density. An extra line integral term, which is well be-
haved and nonsingular, will appear when the object penetrates an
interface. The numerical implementation of the double dot product
is found to be trivial if one takes advantage of the well-established
basis functions in which the unknown current density is expressed.
The new MPIE formulation is employed in conjunction with the
triangular patch model to treat the problem of a dielectric res-
onator (DR) excited by microstrip circuit. A matched-load simula-
tion procedure has been used to extract the network -parameters
of a DR microstrip circuit. The diameters of the circles have been
measured to determine the coupling coefficients and the factors
of the DR excited by a microstrip circuit. The validity of the new
MPIE formulation and the numerical procedure have been verified
by comparing the obtained -parameters with available measure-
ment data.

Index Terms—Boundary integral equations, dielectric antennas,
dielectric bodies, dielectric resonators, electromagnetic coupling,
Green’s function, microstrip circuits, moment methods, nonhomo-
geneous media, numerical analysis.

I. INTRODUCTION

M OST of the method of moments (MoM) analysis tech-
niques available for microstrip structures are limited to

planar geometries consisting of only horizontal current com-
ponents. However, the development of a model for dielectric
resonators (DRs) coupled to microstrip circuits requires an
accurate analysis method that is valid for objects of arbitrary
shape residing on or penetrating into a multilayered medium.
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The same problem arises even for simple structures such as
coax-fed microstrip patches or microstrip circuits whose thick-
nesses cannot be neglected. The MoM procedure for microstrip
circuits can be applied either in the spatial domain [1]–[5]
or the spectral domain [6]–[9]. The spectral-domain analysis
is more suitable and efficient for planar structures, while the
spatial-domain analysis is more general in that it can be easily
applied to objects of arbitrary shape. Michalski presented the
mixed-potential integral-equation (MPIE) approach in [10].
However, it is usually more difficult to formulate an MPIE for
an object of arbitrary shape in the presence of material layers,
such as for a DR embedded in a microstrip circuit, due to the
nonuniqueness of the potentials [11]. Later, Michalski and
Zheng presented three formulations of the MPIE where the
vector-potential dyadic kernel was modified so that only one
scalar-potential kernel was required [12]. These formulations
are amenable to increasing the capability of the well-estab-
lished triangular patch MoM procedure, initially developed by
Rao, Wilton, and Glisson (RWG) [13] for arbitrarily shaped
geometries in free space. An advantage of the MPIE formula-
tion is that vector and scalar potentials are employed, and they
are expressed, respectively, in terms of the current and charge
densities. This type of equation is often preferable to other
forms of the integral equations because less singular kernels
and more rapidly convergent spectral integrals are involved.

The MPIE has been widely adopted to solve the problems of
microstrip planar circuits in the spatial domain [3], [4], [14].
Vandenbosch and Capelle proposed and applied another MPIE,
which employs two scalar-potential kernels (one for a horizontal
dipole and the other for a vertical dipole) to analyze microstrip
circuits consisting of both horizontal and vertical current com-
ponents, but not having both components at the same location,
such as coax-fed rectangular patch antennas [15].

We observe, however, that due to its vector nature, the
numerical implementation of the vector potential in a local
coordinate system results in three integrals [15]; in a planarly
stratified structure, all these three integrals must be performed
over a dyadic kernel, which results in 15 scalar integrals if the
dyadic kernel of the vector potential is kept in the simplest form
originally developed by Sommerfeld, and these integrations
remain the most time-consuming part of the solution process.
The modification of the dyadic kernel of the vector potential
in Michalski’s formulations has the undesirable effect of
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introducing two new nonzero entries, which results in six more
scalar integrals, and which impacts the already time-consuming
process. Thus, our goal is to keep the dyadic kernel of the vector
potential in the simplest form, yet keep the scalar potential in
a form compatible with the original implementation (in terms
of charge density).

Recently, Michalski and Mosig presented a new MPIE for-
mulation where the scalar-potential Green’s function per-
taining to a horizontal dipole was used throughout; the “scalar
potential” was expressed in terms of the scalar-potential kernel

and a “correction factor” , which avoids
the undesirable effect of modification of the vector potential by
not grouping the “correction factor” with the vector-potential
term [16]. A similar work by Montgomery and Wilton can be
found in [17] and [18], where the “correction factor” was in-
tentionally left with the “scalar potential” so that the vector-po-
tential dyadic Green’s function remained unmodified, while the
scalar potential was expressed in terms of both charge and cur-
rent densities.

The objective of this paper is to extend the existing RWG
MoM technique for free-space problems to multilayered media
problems and, specifically, to model DR circuit configurations.
First, two new MPIE formulations are developed systematically.
As usual, the vector potential is represented by a dot product of a
dyadic kernel with the vector current density. Consequently, the
scalar potential, which is related to the vector potential via the
Lorenz gauge, cannot be described with a single scalar kernel.
This is due to the well-known fact that the scalar potentials of
a single point charge associated with a horizontal and vertical
dipole in a multilayered medium are, in general, not identical
[10]. In other words, the scalar potential depends not only on
the value, but also the flow direction of the charge. A static point
charge, on the other hand, produces a unique potential. This can
be verified by the fact that the static portions extracted from the
scalar potentials due to both horizontal and vertical dipoles are
equal to each other. A systematic solution for this anisotropic
problem is to employ a dyadic kernel to represent the scalar po-
tentials [19], where a dyadic charge density is introduced in the
expressions. In this paper, two new formulations of the MPIE
are proposed in which the scalar potential is represented by a
double-dot product of a dyadic kernel with the dyadic charge
distribution. One of the formulations has been found suitable
for penetrating geometries and is easily implemented in a MoM
procedure. In this formulation, the dyadic kernel of the vector
potential is kept in the simple form originally developed by
Sommerfeld [20]. The tradeoff is that the scalar potential has to
be expressed with a dyadic kernel. An extra line integral term,
which is well behaved and nonsingular, will appear when the
object penetrates an interface. The numerical implementation of
the double-dot product is found to be trivial if one takes advan-
tage of the well-established RWG basis functions in which the
unknown current density is expressed. One of these two formu-
lations has recently been adopted and applied to analyze the cir-
cumferential variation of the longitudinal current distributions
on a thin-wire antenna protruding through an interface between
two layered medium [21].

The first part of this paper is dedicated to the description of
the two MPIE formulations. The general geometry to be con-

sidered is described in Section II and a system of MPIE integral
equations is presented for the problem under consideration. In
Section III, the dyadic Green’s functions of the scalar poten-
tials involved in the integral equations are deduced from a gen-
eral form for the vector-potential dyadic Green’s functions. The
derivation of the general form for the vector-potential dyadic
Green’s function is outlined in the Appendix. The cylindrical
vector wave functions used as the modal functions in the deriva-
tion are described in [22, App. C], where some of the relations of
the wave functions, which have not been listed in literature yet,
are also presented. The properties of the scalar-potential dyadic
Green’s functions are discussed in Section IV.

The numerical implementation with the MoM is presented
in Section II of this paper to analyze the problem of a DR
excited by microstrip circuit. In conjunction with the wide-
spread development of wireless information networks such
as cellular, personal communication services (PCSs), satellite
communication systems, mobile computing, and other new
systems and services, monolithic microwave integrated circuits
(MMICs) have advanced significantly in the past few years.
The primary motivation for developing MMICs in wireless
communications such as PCSs is to achieve higher quality,
longer battery lifetime, lower cost, and lighter terminals [23].
DRs with high-permittivity and low-temperature coefficients
are smaller than waveguide or coaxial resonators, are easily
fabricated, and are compatible with MMIC implementation
[24], [25]. Using DRs, instead of metal cavities, in a multilay-
ered medium coupled to a microstrip line or a slot aperture,
eliminates the need for microstrip-to-cavity adapters and
provides great flexibility to realize complicated bilateral and
multilayered printed circuits, thus allowing very compact
high-density circuit integration.

With the advent of the high dielectric-constant and low-tem-
perature coefficient ceramic materials, the applications of the
DR in the design of passive and active microwave circuits [26],
[27] have spread toward low frequencies for mobile commu-
nications such as PCSs at 1.8–2 GHz. An experimental study
of a DR, of relative dielectric constant 80 and of resonant fre-
quency about 1.7 GHz, coupled to a microstrip line can be found
in [28]. The MoM has been used to calculate the characteristics
of an isolated DR that is of the body-of-revolution type [29],
[30]. This model includes both dielectric and radiation losses.
Numerical analysis of in-circuit parameters of a DR is more
challenging. Recently, a study of the DR antennas excited by a
coaxial probe or slot aperture has been conducted both in theory
and measurement at the University of Mississippi, University
[31]–[33], where the theoretical investigations have considered
mainly structures consisting of body-of-revolution DRs com-
bined with wires or slots.

The new MPIE formulation developed in this paper is used
here in conjunction with the triangular patch model, originally
developed for arbitrarily shaped objects in free space, to
model the problem of a DR excited by microstrip circuit. The
numerical procedure has been modified to handle the potential
dyadic kernels and the dyadic charge density, as described
in Section VI. Section VII briefly describes a matched-load
simulation procedure that has been used to extract the network

-parameters of a DR microstrip circuit. The diameters of the



CHEN et al.: APPLICATION OF NEW MPIE FORMULATION TO ANALYSIS OF DR 265

Fig. 1. General geometry under consideration.

circles have been also measured to determine the coupling
coefficients and the factors of the DR excited by a microstrip
circuit. The validity of the new MPIE formulation and the
numerical procedure have been verified by comparing the
obtained -parameters with available measurement data in
Section VIII, and a summary is provided in Section IX.

II. PRELIMINARIES

This section contains the statement of the general geometry
to be considered. A preliminary description of the new MPIE
formulations is also presented for the problem under considera-
tion. The detailed mathematical expressions and the properties
of the potential dyadic Green’s functions involved in the inte-
gral equation are presented in the two subsequent sections.

A. General Geometry Under Consideration

The cross-sectional view of the structure under consideration
is shown in Fig. 1. The medium consists ofplanar dielectric
layers, with the layer interfaces parallel to the– -plane. The
relative permittivity and permeability of the layered medium are
given by the tensor

(1)

where the subscriptdenotes components in the plane perpen-
dicular to , and

It is also convenient to define an anisotropy ratio
for the layer. Each layer of the medium, say, theth layer, is
assumed homogeneous and is characterized byand .

The object shown in Fig. 1 is embedded in the multilayered
structure and may consist of conducting and/or dielectric mate-
rials. The equivalence principle is employed to replace the ob-
ject with unknown equivalent surface currents. By enforcing the
boundary conditions on the surface of the object, a system of in-

tegral equations for the unknown currents can be established as
follows:

on (2a)

on (2b)

on (2c)

In (2), subscripts and denote the exterior and interior regions,
respectively, and superscripts and denote the incident field
and the scattered field due to the equivalent currents.and
represent the conducting and dielectric surfaces, respectively.

B. MPIE Formulation

The fields in (2) can be written as the mixed-potential forms
[34]

(3a)

(3b)

where is the magnetic vector potential due to the electric cur-
rent density , and is given as

(4)

The electric scalar potential is related to the vector potential by
the Lorenz gauge to obtain

(5)

To deduce the scalar-potential Green’s function, one needs to
transform the divergence operator to act on the current density.
To do so, it is postulated that

(6)

One can always find a dyadic kernel that satisfies (6) al-
though it may not be unique. Equation (6) is a vector equation,
which renders three scalar equations, but there are nine entries
in to determine. It will always be possible to choose some of
the entries as “correction factors” that make (6) hold. Of course,
one would like to have most of the entries to be zero. With a
dyadic kernel on the right-hand side, our goal can be achieved.
If instead a scalar kernel is used, as in [12, eq. (12)], in general,
one would not be able to find a scalar kernel that satisfies [12,
eq. (12)] without modifying the vector-potential kernel because
there is only one function to determine and it must satisfy all
three scalar equations that are rendered from a vector equation.
However, if the three scalar equations are identical or similar
(as in free space), the scalar kernel exists. Unfortunately, this is
not the case for layered medium where a “correction factor”,
as in [12, eq. (13)] has to be introduced. However, by using a
dyadic kernel and the dyadic identities [35]

and

(7)



266 IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 49, NO. 2, FEBRUARY 2001

Fig. 2. Definition ofû in the upper medium for a triangle pair penetrating an
interface.

the equation for the scalar potential can be written as

(8)

where is the line formed by the intersection of the body sur-
face and the interface with the layer surface, the unit vector
lies in the plane tangential to the surface of the object and is per-
pendicular to , as shown in Fig. 2, and is the unit vector
normal to the surface of the triangle. It should be pointed out
that the line integral will disappear if the object is confined in a
single layer.

It is proved in the following section that the scalar-potential
dyadic Green’s function has the following general form:

(9)

where is related to the charge density associated with the
horizontal current component, while is related to the charge
density associated with vertical current component. For the tra-
ditional formulation, is a continuous function as both the
source and field points cross the interface, whileis contin-
uous as the field point crosses the interface, but is discontinuous
as the source point crosses the interface. Using these features,
the line integral appearing in (8) can be further simplified upon
observing that

(10)

Since is a continuous function, the first term in (10) will
cancel out when the line integral is implemented on the pene-
trating edge just above and below the interface. Thus, (8) be-
comes

(11)

Since and have the same singular behavior, the line in-
tegral in (11) is well behaved and nonsingular.

Although our objective is to derive the potential dyadic
Green’s functions, it is more convenient to derive the field
counterparts initially because the fields are unique while the
potentials are not. Also, the expressions of the boundary con-
ditions on the interfaces between two layers are more concise
in terms of fields than in terms of potentials. In this paper,
the cylindrical vector wave functions are chosen as the modal
functions for a planarly stratified medium, and the modal
function expansion procedure in [36] is then employed to
derive the field dyadic Green’s functions. The potential dyadic
Green’s functions are then deduced from the field counterparts.
To conserve space, a general form for the vector dyadic Green’s
function is listed in the Appendix, where only the outline of
the derivation is given. The scalar-potential dyadic Green’s
function will be derived, in the following section, from the
general expression for the vector-potential dyadic Green’s
function.

To complete the description of the MPIE formulations, it
should be mentioned that similar formulations and conclusions
can be obtained for the electric vector and magnetic scalar
potentials.

III. SCALAR-POTENTIAL DYADIC GREEN’S FUNCTIONS IN A

MULTILAYERED UNIAXIAL MEDIUM

In this section, the scalar-potential dyadic Green’s functions
in a multilayered uniaxial medium are deduced from the vector-
potential counterparts using the Lorenz gauge. The nonunique-
ness and the properties of the potential Green’s functions are
discussed in the following section. The derivation of the field
dyadic Green’s functions in a planarly stratified medium has
been well documented [36], [37]. In contrast, studies of poten-
tial (especially scalar potential) Green’s functions due to an ar-
bitrary source in a stratified medium have only been presented
in academic journals [12], [19]. These studies have attracted at-
tention since the 1980’s due to the development of MPIE numer-
ical procedures. The traditional way to derive potential Green’s
functions due to an arbitrary source starts by presuming an ex-
pression—either the traditional or alternative form [10]. Here,
the derivation begins with the general expression for the vector
potential in a uniaxial medium so that the vector potential due
to an arbitrary source in a stratified uniaxial medium can be
derived naturally without any presumptions. Unfortunately, the
scalar potential, which is related to the vector potential by the
Lorenz gauge, contains a simple pole at in the spectral
domain. This singularity has to be subtracted, otherwise prob-
lems arise in the numerical computations. Two formulations of
vector and scalar potentials are presented here, which result
from two different ways of subtracting the singularity. One of
the formulations is subsequently implemented.

A. General Expressions of Scalar Potentials

In a layered uniaxial medium, the scalar potentials due to a
single point charge associated with the horizontal and vertical
dipoles are, in general, different [10], and one cannot calculate
the scalar potentials due to an arbitrarily oriented dipole via an
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integral with a single scalar kernel . Michalski and Zheng
[12] choose to be the scalar potential of either the horizontal
or vertical dipole, and then use a correction function in
the vector potential to account for the other part of the scalar
potential.

In this section, the scalar potential due to an arbitrarily ori-
ented dipole is formulated in a dyadic form. The scalar poten-
tial is related to the vector potential by the Lorenz gauge, as
expressed in (5). Since the divergence operator would make the
kernel more singular, we attempt to transfer the operatorto
act on the current density, so that the scalar potential can be ex-
pressed in terms of the charge density. From [22, eqs. (A-8a)
and (C-7a)], one can obtain

(12)

In order to transform the divergence operator to the current den-
sity, we attempt to find a dyadic , , as defined in (6). In view
of (6) and (12), can be written as

(13)

where denotes the scalar potential of a single point charge
associated with a horizontal electric dipole anddenotes the
scalar potential of a single point charge associated with a vertical
electric dipole. Substitution of (12) and (13) into (6) yields

(14a)

(14b)

Using (14) with (A-8a), (A-5), and [22, eq. (C-7)], we find that
and may be written as

(15a)

(15b)

where is the anisotropy ratio for the permittivity in theth
layer and other parameters are defined in the Appendix.

A close examination of (15a) reveals that has a pole at
. The various ways to subtract the pole will lead to fol-

lowing formulations.

B. Formulation A

In order to subtract the pole of at , one can assume

(16)

where

(17)

From (3)–(5), (12), and (14), we have

(18)
where is the -field dyadic Green’s function due to the elec-
tric current source and

(19a)

(19b)

Substitution of (A-8a) and (17) into (19) yields

(20a)

(20b)

(20c)

By duality, we have

(21)

where is the -field dyadic Green’s function due to the
magnetic current source and

(22)

The expressions for , , and are similar to those for
, , and given in (20), but have been omitted for brevity.

The full expressions can be found in [22].
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C. Formulation B

An alternate way to subtract the pole of at is to
assume to be given by

(23)

Substitution of (A-8a) and (23) into (19) yields

(24a)

(24b)

The expressions for and can again be obtained from
duality and are provided in [22]. The scalar potentialsand

of a single charge associated with vertical dipoles are in the
same forms as in Formulation A.

IV. DISCUSSION

Two formulations have been derived systematically in the
previous section. It is worth noting that the vector-potential
dyadic Green’s functions in Formulations A and B are, re-
spectively, in the traditional and alternative forms [37], and
here, we simply derive them in a different way (from a general
expression). In order to keep the vector potential in these two
simplest forms, a dyadic charge density is introduced, and the
scalar potential is represented by a double-dot product of a
dyadic kernel or with the dyadic charge density. In
Formulation A, and involve all of the four Green’s
functions of a multisectional transmission line, and and

are continuous as both source and field points cross the
interfaces, while and are continuous as the field point
crosses the interfaces, but discontinuous as the source point
crosses the interfaces. In Formulation B, and involve
only two of the four Green’s functions of the multisectional
transmission line, and and are continuous as the source
point crosses the interfaces, but discontinuous as the field
point crosses the interfaces, whileand are continuous as
the field point crosses the interfaces, but discontinuous as the
source point crosses the interfaces. When the embedded objects
are confined in a single layer, and are, respectively,
equal to and in Formulation B. In general, the dyadic
Green’s functions of the scalar potentials involved in (8) are
discontinuous as the source point crosses the interfaces in
Formulation A, however they are discontinuous as either the

source or field point crosses an interface in Formulation B. In
view of (3), during the testing procedure, one may prefer to
transfer the gradient operators to act on the testing functions.
If Formulation A is employed, no additional contour integrals
appear during the testing procedure.

It is worth noting that the double-dot product in (11) will re-
duce to a scalar product if and are the same. Actually, by
properly choosing in (16) or rearranging (18), one can de-
rive a scalar Green’s function for . Unfortunately, it will result
in more nonzero entries in the vector-potential dyadic Green’s
function.

The numerical implementation of Formulation A, in conjunc-
tion with the triangular patch model, is given in the second part
of this paper. For the sake of efficiency, the implementation of
the vector potentials is conducted in a local coordinate system
[13], which results in three integrals over the source triangle.
The three integral kernels are, respectively, , , and

. In Michalski’s Formulation C, contains seven nonzero
entries, which results in a total of 21 scalar integrals for the
vector potentials, plus one for the scalar potentials, and they all
are singular. With Formulation A presented in this paper,
contains only five nonzero entries, which results in a total of 15
scalar integrals for the vector potentials. The tradeoff, as will be
stated in the second part of this paper, is that an extra scalar in-
tegral, which does not occur for objects in free space, appears
for the scalar potentials. Furthermore, a line integral along the
penetrating edges will occur when the object penetrates the in-
terfaces. However, these two integrals are nonsingular and well
behaved. As can be seen from the above analysis, Formulation
A presented in this paper is more efficient, but one may need
to add a code segment in the preprocessor to keep track of the
penetrating edges, and one may also need to add a subroutine to
carry out the line integral.

V. APPLICATIONS

A. DR Coupled to a Microstrip Line

One specific configuration of interest in this paper is that of a
DR coupled to a microstrip line. A DR in a multilayered medium
coupled to a microstrip line can be used whenever a resonator
is needed in a microstrip circuit. In theory, the resonant fre-
quency can be determined by the resonant mode, dimensions,
and permittivity of the DR along with the circuit environment,
and the coupling coefficient can be adjusted by varying the dis-
tance from the DR to the edge of the microstrip line. In practice,
however, the exact in-circuit resonant frequency cannot be pre-
dicted precisely due to the thermal expansion and the dimension
tolerances of both the resonator and microstrip line. A simple,
but effective tuning mechanism was introduced by Buer and
El-Sharawy [38], where a nonresonant section of a microstrip
line was employed to adjust the resonant frequency by offset-
ting the resonator with respect to the center of the tuning line.
The position of the DR with respect to the microstrip feed line
is also crucial in order to excite the desired mode. Thorough
studies of different modes of DRs have been conducted in the
Department of Electrical Engineering, University of Mississippi
[24]. The studies have been continuing in both experimental and
theoretical aspects in order to attain sufficient knowledge about
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(a)

(b)

(c)

Fig. 3. Geometry and mathematical models of a DR coupled to a microstrip
line. (a) Geometry of a DR coupled to a microstrip line. (b) Equivalent problem
for the interior region. (c) Equivalent problem for the exterior region.

the frequency response of a DR coupled to microstrip circuit in
a variety of circumstances.

In practice, the two lowest modes and have
been used primarily [24]. The former has a high unloaded
quality factor and remains the primary choice for resonator use
in a microstrip circuit, while the latter is a strong radiation mode
and has been selected as an antenna [31]. The configuration for
coupling of the mode to a microstrip line is shown in
Fig. 3(a). In accordance with the surface equivalence principle
[34], the original problem can be divided into two problems.
Fig. 3(b) illustrates the equivalent problem for the region
interior to the surface of the DR, where the homogeneous space
Green’s function is employed through potential functions to
represent the field quantities. Fig. 3(c) illustrates the equivalent
problem for the region exterior to the surface of the DR, where
the multilayered medium Green’s functions are used in terms
of appropriate potential functions to express the electric and
magnetic fields. By enforcing the boundary conditions that
the tangential components of the electric field must vanish on
the conductor surface, and that the tangential components of
both the electric and magnetic fields must be continuous across
the dielectric surface, a system of integral equations can be
established to determine the unknown equivalent currents
and . This system of equations can be found in (2).

B. DR Coupled to a Slot Aperture

Another specific configuration of interest in this paper is that
of a DR coupled to a slot aperture. Fig. 4(a) illustrates the ge-
ometry of a DR coupled to a slot aperture. This implementa-
tion can be used to realize bilateral microstrip circuits and ulti-
mately allows more compact circuit integration. The DR is po-

(a)

(b)

(c)

Fig. 4. Mathematical models of a DR coupled a slot aperture. (a) Geometry of
a DR coupled to a slot aperture. (b) Equivalent problem for the upper half-space.
(c) Equivalent problem for the lower half-space.

sitioned on a substrate supported by a perfect electric conductor
(PEC) ground plane with a slot aperture. On the other side of the
PEC ground plane, a microstrip line is extended to the area be-
neath the slot. The DR is excited by coupling through the slot to
the microstrip line where the source voltage is applied. Again,
after applying the equivalence principle at the slot, the original
problem can be divided into two equivalent situations. Fig. 4(b)
illustrates the equivalent problem valid in the upper half-space

. This problem is similar to the problem of DR with di-
rect excitation, except for the presence of the equivalent mag-
netic current just above the original slot area. It should be
understood that the physical slot has been shorted in the equiv-
alent problem. Fig. 4(c) illustrates the equivalent problem valid
in the lower half-space . This problem is a typical mi-
crostrip-line problem, except, of course, that the physical slot
has been replaced by the equivalent magnetic current. Ac-
cording to the boundary condition that the tangential compo-
nent of the electric field is continuous across the slot, we have

. The two equivalent problems are then coupled
with each other by enforcing magnetic-field continuity across
the slot, and a system of integral equations can be established
to determine the unknown equivalent currents. This system of
equations is given by (2), except that the electric fields on the
microstrip conductor surface should include a subscript
to denote that the parameters of the lower half-space are used,
the exterior electric and magnetic fields on the DR surface
should include a subscript to denote that the parameters of
the upper half-space are used, and an equation must be included
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to enforce continuity of the tangential magnetic field across the
slot aperture surface

on (25)

VI. NUMERICAL PROCEDURE

Here, the MoM [39] is employed in conjunction with the po-
tential dyadic Green’s functions given by (19) and (20) along
with their duality counterparts to solve the DR microstrip cir-
cuit problem. In the numerical procedure, the triangular patch
model developed in [13] is employed. The procedure is modi-
fied to handle the potential dyadic kernels and the dyadic charge
density. As the first step of the numerical process, the surfaces
of the objects embedded in the multilayered media are approxi-
mated by a set of planar triangular patches. The equivalent sur-
face currents are then expanded using basis functions defined
on triangle pairs with the unknown coefficients corresponding
to the common edges. The charge density discontinuity that may
exist at an interface is accounted for by the line integral in (11).
Testing functions are then chosen to enforce the integral equa-
tions on each triangle pair, which reduces the integral equation
into a system of linear equations or, in more compact form, a
matrix equation. In order to extract the-parameters of a mul-
tiport microstrip circuit, a matched-load simulation [4] is used,
which results in modification of the -matrix. Once the matrix
equation is solved, the-parameters can be evaluated from the
current standing-wave patterns.

A. Triangular Patch Model

Following the RWG procedure [13], the surfaceof the ob-
ject is modeled by planar triangular patches. The unknown cur-
rent density is then expanded on triangle pairs as

(26)

where is the number of interior edges and the’s are the
unknown coefficients to be determined. After representing the
basis function associated with theth edge in the local co-
ordinate system [40], the dyadic charge density associated with
the basis function can be written as

(27)

where ’s are the normalized area coordinates,’s are sequen-
tially oriented vectors forming the triangle edges, and

, is the height of the triangle with respect to theth
edge, and the subscripts are counted modulo three (e.g.,
and ). Thus, as can be seen in (27), the dyadic charge
density can be written in a simple form in terms of the parame-
ters of the triangular patch.

B. Implementation of the MPIE

For the problem of a DR coupled to a microstrip line, upon
using the expansion for the surface current densities in (26) and

employing a Galerkin testing procedure, a partitioned matrix
equation can be obtained as follows:

(28)

where subscriptsand denote, respectively, the microstrip line
and DR, while the superscriptsand denote, respectively,
the electric field or current and magnetic field or current. The
elements of , , , and are given in terms of
potential functions as

(29)

The elements in and are given as

(30)

In (29) and (30), the potentials are given by

(31a)

(31b)

The elements in , , and are easily obtained
in terms of the electric vector potential and the magnetic scalar
potential by duality. Details are given in [22].

In the normalized area coordinates system, the magnetic
vector potential associated with a pair of triangles can be
represented as

(32)

where

After some manipulations, can be written as

(33)

Similar equations in terms of normalized area coordinates for
and can also be obtained. We observe, from (32),
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that an undesirable line integral appears when objects penetrate
interfaces. However, this line integral and the additional integral
due to the second term of (33) are of scalar type and nonsingular.
The extra effort in evaluating these integrals is well worth the
cost in order to keep the three dyadic integrals in (32) in the
simplest forms. For a planar microstrip circuit, and are
normal to , thus the second term of (33) disappears.

For the problem of a DR coupled to a slot aperture, upon using
the expansion for the surface current densities in (2) and (25)
and testing the resulting equations with, a partitioned matrix
equation can be obtained of the form

(34)

where the subscripts, , and denote, respectively, microstrip
line, slot aperture, and DR, and the subscriptsand denote,
respectively, upper half-space and lower half-space, while the
superscripts and denote, respectively, electric field or cur-
rent and magnetic field or current. The elements of the-matrix
are given by the same equations as those for the problem of a
DR coupled to a microstrip line, provided that the corresponding
upper or lower medium parameters are used.

Due to its dyadic nature, the implementation of the potential
Green’s functions is very tedious. However, the computational
effort is greatly reduced since the kernels of these functions
are the transmission-line voltages and currents that satisfy the
transmission-line equations (A-5), and furthermore, by duality,

and can be obtained by replacing all the
characteristic impedances with their reciprocal (charac-
teristic admittance) in and , which results
in changing the signs of all reflection coefficients. Also, in order
to speed up the computation of the dyadic Green’s functions, a
general three-dimensional interpolation model has been devel-
oped [41]. The interpolation model selectsvertical planes to
be tabulated and then interpolates between them. All the grid
values on the same vertical plane can be tabulated by a single
subroutine call, which saves the overhead due to the stack ma-
nipulations necessary for subroutine calls and the overhead due
to the recomputation of the quadrature coefficients, the Bessel
functions, and the transmission-line parameters.

VII. CIRCUIT PARAMETER EXTRACTION

A. Evaluation of the -Parameters

The feed lines of a microstrip circuit support only hybrid
electromagnetic (HEM) waves. For moderately low frequencies
( and ), the HEM field has negligibly small longi-
tudinal components [42]. With this quasi-TEM assumption, the
traditional transmission-line theory can be used to evaluate the

Fig. 5. Matched output port with MLS applied on the triangle edges denoted
by solid lines.

-parameters of a multiport microstrip circuit as long as the ref-
erence planes are specified far from the discontinuities. This can
be done by extending the physical lengths of the feed lines and
exciting the input port with all output ports matched so that the
incident, reflected, and transmitted waves can be identified. In
the MoM procedure, the excitation can be modeled with a-gap
voltage source, while the matched outputs can be simulated by
enforcing in the space domain a unidirectional current traveling
wave propagating in the direction away from the discontinuities.
This procedure is known as matched load simulation (MLS).
This simulation procedure results in the modification of matrix
equations (28) and (34). Two simulation methods have been pro-
posed in [4]. The first method enforces a traveling wave with
amplitude equal to one on the output port, while it leaves the
-gap voltage source to be determined. This method requires

one to rearrange the matrix equation, and the rearrangement is
quite tedious for a multiport network. The second method de-
scribed below is more suitable for multiport microstrip circuits,
thus, it is employed here. For a narrow output line, as shown in
Fig. 5, if denotes an edge where the traveling-wave constraint
is to be enforced, the simulation can be done by introducing new
linear equations into the matrix equation of the form

(35)

where is the transmission-line wavenumber,is the length
between edge, and the next constraint edge. With the new
linear equation, theth row in the -matrix becomes

(36)

Once the modified matrix equation is solved for the current dis-
tribution, the -parameters can be extracted from the current
standing-wave patterns.

B. Circles

The equivalent circuit for a mode coupled to a mi-
crostrip line is shown in Fig. 6. The loci of for different
values of form one or more distinct circles on the Smith chart,
where is the normalized impedance in the symmetry
plane, and is the distance from the edge of the DR to the edge
of the microstrip line. These loci are calledcircles [43]. For
a high- resonator circuit, the loci move considerably faster in
the vicinity of the resonant frequency. For a particular value of
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(a)

(b)

Fig. 6. Equivalent circuit of aTE -mode resonator coupled to a microstrip
line. (a) Actual configuration. (b) Equivalent circuit.

, the diameter of a circle determines the coupling coeffi-
cient

(37)

Critical coupling occurs when the diameter of the
circle is equal to one. For this case, the power dissipated in the
resonator is equal to the power delivered to the external circuit.
The loaded quality factor can be determined by the following
equation:

(38)

where is the resonant frequency, and are the frequen-
cies corresponding to the preselected anglesand counted
clockwise and anticlockwise from at the resonant fre-
quency.

VIII. N UMERICAL RESULTS

For validation, several examples have been computed for
planar microstrip circuits, such as the filter example in [4] and
the microstrip line coupler in [44], but these results are omitted
for brevity. The example of a dipole antenna penetrating a
half-space dielectric interface with an angle was also consid-
ered, and our results were found to be in agreement with those
published in [45]. These results are presented in [41].

A. DR Coupled to a Microstrip Circuit

The traditional way of coupling a DR to a microstrip circuit
is to place the DR beside a microstrip line that is connected to
the microstrip circuit. A theoretical study of such a DR coupled
to a microstrip line is first conducted. The numerical results are
then compared to available measured data [28]. A novel tuning
mechanism [38] is also investigated numerically. The second
case studied in this section is a microstrip-line aperture-coupled

Fig. 7. S-parameters of aTE -mode resonator coupled to a microstrip line
with d = 0.

DR antenna. Numerical results for this case are computed with
the approach presented here and are compared with available
measured data [46]. All the numerical computations are per-
formed with the Trans-Tech resonator made of D8600 material

, and having a diameter of 22.99 mm and a height of
10.34 mm.

1) DR Coupled to a Microstrip Line:The geometry and the
equivalent circuit for coupling of the resonator mode to
a microstrip line are shown in Fig. 6. The substrate is Rogers
RT/Duroid 5880 of thickness 1.59 mm and the relative dielectric
constant is 2.2. The width of the microstrip line is chosen to be
4.8 mm to achieve a 50-characteristic impedance. This struc-
ture has been previously investigated experimentally by Kajfez
and Guo [28]. Numerical results are computed for comparison.
In the numerical procedure, the microstrip line is extended to
identify the incident and reflected waves, and the DR is modeled
with 880 triangles. On the bottom and the top of the dielectric
cylinder, four triangles are employed for the innermost circles,
while 64 triangles are used for the outermost rings.

The coupling coefficient and the loadedfactor can be reg-
ulated by changing the distance between the DR and microstrip
line. For mm, the numerical results for the-parameters
are shown as functions of relative frequency in Fig. 7. The
computed resonant frequency is GHz, while the
measured one is GHz, thus, the difference in the
resonant frequency is 0.64%. The standing-wave patterns for the
current at three different frequencies on the microstrip line are
shown in Fig. 8. One observes from Fig. 8 that the current dis-
tributions remain approximately constant at the output port due
to the effect of the matched load, while they vary significantly
at the input port due to the equivalent impedanceat .

For cases in which is varied from 0 to 6 mm, the computed
and measured resonant frequencies, as well as the percentage
differences between them, are summarized in Table I. The com-
puted coupling coefficients and the factors are computed by
the program QZERO in [43]. The results are summarized in
Table II.
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Fig. 8. Current distributions on the microstrip line.

TABLE I
RESONANT FREQUENCIES

B. Tuning DR

A novel tuning mechanism introduced by Buer and
El-Sharawy [38] is investigated numerically next. The tech-
nique, as shown in Fig. 9, employs a nonresonant section of a
microstrip line to modify the resonant frequency. The reactance
added to the resonator can be adjusted by simply changing
the offset of the tuning line with respect to the center of
the DR. A nonresonant tuning line was employed to avoid
significant degradation, although it provides less tuning
range than a resonant line does. In the numerical computation,
DRs with both nonresonant and resonant tuning lines are
investigated. The nonresonant and resonant tuning lines are of
lengths mm (approximately at ) and

mm (approximately at ), respectively,
and both are of characteristic impedance with both
ends open. The parameters of the DR, microstrip feed line,
and substrate are the same as in the previous case. For a DR
with a nonresonant tuning line, the numerical results for the

equivalent series impedance for different values of are
shown in Fig. 10 and the variation of the resonant frequency
and the unloaded quality factor as a function of the offset
are shown in Table III. For a DR with a resonant tuning line,
the numerical results for the equivalent series impedance
for different values of are shown in Fig. 11 and the variation
of the resonant frequency and the unloaded quality factor as a
function of the offset are shown in Table IV. It can be seen,
from Tables III and IV, that the unloaded quality factor of a DR
with a resonant tuning line is much smaller than that of a DR
with a nonresonant tuning line. That is because the radiation
loss of the former is much larger than that of the latter.

C. DR Coupled to a Slot Aperture

The geometry for coupling of the resonator mode
to a slot aperture is shown in Fig. 4(a). The substrate on which
the microstrip line is etched is Rogers RT/Duroid 5880 of thick-
ness 1.575 mm and the relative dielectric constant is 2.2 with



274 IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 49, NO. 2, FEBRUARY 2001

TABLE II
COUPLING COEFFICIENTS ANDQ FACTOR

Fig. 9. Tuning DR.

Fig. 10. Z of a DR with nonresonant tuning line as a function of frequency
for s = 0, s = 12:9 mm, ands = 25:8 mm.

loss tangent 0.0004. The width of the microstrip line is chosen
to be 4.5 mm to achieve a 50-characteristic impedance. The
parameters of the DR are the same as in the two previous cases.
The ground plane has a 23 2 mm rectangular aperture that
provides the excitation for the mode in the DR. This
structure is primarily used as an antenna to achieve wider band-
width and higher power-handling capability, as compared with
microstrip antenna of similar size.

TABLE III
RESONANT FREQUENCY AND UNLOADED Q FACTOR OF A DR WITH

NONRESISTANTTUNING LINE

TABLE IV
RESONANT FREQUENCY AND UNLOADED Q FACTOR OF A DR WITH A

RESONANT TUNING LINE

The resonant frequency and input resistance of the
mode can be controlled by changing the thickness and permit-
tivity of the substrate on which the DR resides. For the case in
which mm with , the numerical results for
the series equivalent impedanceare shown in Fig. 12 and the
numerical results are compared with measured data from [46].
The measurement was performed on the same geometry, except
that the substrate on which the DR resided was replaced by a di-
electric spacer of diameter 22.99 mm with the same permittivity
and thickness. As can be seen, reasonable agreement has been
obtained. A possible reason for the differences could be due to
the infinite ground-plane model and the surface waves that are
excited in the numerical models. The surface waves are absent
in the measurement model because the substrate (a spacer) does
not extend beyond the DR. It should be noted that the resonant
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Fig. 11. Z of a DR with a resonant tuning line as a function of frequency fors = 0, s = 6:45 mm,s = 12:9 mm. (a)s = 0. (b) s = 6:45mm. (c)s = 12:9

mm.

Fig. 12. Z of anHEM -mode resonator coupled to a slot aperture (t = 0:79 mm,� = 2:5). (a) Measured data from [46]. (b) This method.

frequency obtained with the numerical model is within 3% of
the measured result.

For the case in which is varied from 2 to 2.5, results for
the series equivalent impedance as a function of frequency
are shown in Fig. 13. As the permittivity of the substrate on
which the DR resides increases, the electrical length of the slot
increases, thus, the mode is more strongly coupled. For
the cases in which is varied from 0.79 to 1.59 mm, results for
the series equivalent impedance as a function of frequency
are shown in Fig. 14.

IX. CONCLUSION

In this paper, a new MPIE formulation has been developed
for the analysis of electromagnetic problems due to conducting
or dielectric objects of arbitrary shape embedded in a planarly
stratified medium. In the new MPIE formulation, the dyadic
kernel of the vector potential is kept in the simple form origi-
nally developed by Sommerfeld, yet the scalar potential, which
is represented by a double-dot product of a dyadic kernel with
a dyadic charge density, remains compatible with the original
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Fig. 13. Z of anHEM -mode resonator coupled to a slot aperture (t =

0:79 mm). (a)� = 2:5. (b) � = 2:25. (c) � = 2:0.

triangular patch implementation. When it is represented in
the local coordinate system, the dyadic charge density can
be written in a simple form in terms of the orientation and
shape of the triangle. Thus, the numerical implementation of
the double-dot product is trivial if one takes advantage of the
well-established basis functions in which the unknown current
density is expressed. This new MPIE formulation is valid
for electromagnetic problems in an inhomogeneous and/or
anisotropic medium, provided that the correct dyadic kernel
is employed. As presented in [48], the- and -field dyadic
Green’s functions have been derived for many classical elec-
tromagnetic boundary problems. However, the potential dyadic
Green’s functions for most of these problems still remain un-
known. The new MPIE formulation is derived from the- and

-field dyadic Green’s functions based on a general expression
of the vector-potential dyadic Green’s function. Thus, once
the - and -field dyadic Green’s functions are available, the
derivation procedure for the MPIE formulation presented in
this paper can be applied for many of these boundary problems.
In summary, the derivation of the new MPIE formulation is
systematic and the numerical implementation is efficient, yet it
remains compatible with the original procedure.

The new MPIE formulation has been employed in conjunc-
tion with the triangular patch model, originally developed for
arbitrarily shaped objects in free space [13] to solve a DR
microstrip circuit problem. The numerical procedure has been
modified to handle the dyadic kernels of the potentials and the
dyadic charge density. In order to extract the-parameters of a
DR microstrip circuit, an MLS [4] has been used, which results
in modification of the -matrix. Once the matrix equation is
solved, the -parameters can be evaluated from the current
standing-wave patterns. The diameters of thecircles have
been measured to determine the coupling coefficients and
the factors of the DR excited by a microstrip circuit. The
numerical results of current distributions,-parameters, and
equivalent serial impedances for a -mode DR coupled
to a microstrip line and an -mode DR coupled to a
slot aperture have been presented and discussed. The coupling

coefficient and factor of the -mode DR have also
been evaluated. The validity of the new MPIE formulation and
the numerical procedure have been verified by comparing the
obtained -parameters with available measurement data. It
is worthwhile to mention that, as demonstrated by the cases
of a thin-wire antenna partially buried in the earth and sea
[41], [45], [47], the new MPIE formulation and the numerical
procedure are valid and well suited for objects penetrating an
interface between two media.

APPENDIX

GENERAL FORM OFVECTOR-POTENTIAL DYADIC GREEN’S

FUNCTIONS

In an anisotropic space, different field components are, in
general, coupled together, which makes the solution extremely
tedious. Fortunately, in a uniaxial stratified media, the longitu-
dinal- and transverse-field components can be decoupled. By
expanding the transverse fields into modal functions, the trans-
verse-field equations can be reduced to two simple transmis-
sion-line equations along the-direction. One of them is for the
TE modes, the other is for the TM modes.

The modal functions and must be complete and or-
thogonal to each other. They represent and compo-
nents, respectively. The orthogonality of and can be ex-
pressed as

and

(A-1)

The completeness criterion is guaranteed if one of them is
solenoidal and the other is irrotational [36] as follows:

(A-2)

For a planarly stratified structure, cylindrical vector wave func-
tions are good candidates. The transverse components of the
solenoidal functions satisfy (A-1) and (A-2), as is proven in [22,
App. C].

The transmission-line equations for the expansion coeffi-
cients and in either the TE or TM case can be derived as
[36, p. 747]

(A-3a)

(A-3b)

where, for TM modes, the propagation constantand the char-
acteristic impedance are defined as

(A-4a)
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Fig. 14. Z of anHEM -mode resonator coupled to a slot aperture (� = 2:5). (a) t = 0:79 mm. (b)t = 1:19 mm. (c)t = 1:59 mm.

while for TE modes

(A-4b)

In order to solve the transmission-line equations (A-3) for the
voltage and current , it is convenient to introduce the
voltage and current transmission-line Green’s functions, which
are defined as

(A-5a)

(A-5b)

(A-5c)

(A-5d)

where the superscript denotes or , while the subscripts
and denote the observation and source layers, respectively.

and denote the voltage Green’s func-
tions due to the current source and the voltage source

, respectively. and denote the cur-
rent Green’s functions due to the current source and the
voltage source , respectively.

The transmission-line Green’s functions defined in (A-5) sat-
isfy reciprocity properties when and are either constant or

dependent [36, p. 194]

(A-6a)

(A-6b)

(A-6c)

The derivation of has been conducted in [12],
[36]. Once it is known, the remaining three transmission-line
Green’s functions can be found from (A-5) and (A-6) im-
mediately. The - and -field dyadic Green’s functions can
be easily found in terms of the transmission-line Green’s
functions. From Maxwell’s equations and the Lorenz gauge,
a general expression of the dyadic Green’s function for the
magnetic vector potential in a uniaxial medium can be written
as

(A-7)

where the subscriptdenotes components in the plane perpen-
dicular to .

Based on the expression of (A-7), a general form of the mag-
netic vector-potential dyadic can be derived from the field coun-
terparts as

(A-8a)



278 IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 49, NO. 2, FEBRUARY 2001

Similarly, a general expression of the electric vector-potential
dyadic Green’s function can be written as

(A-8b)

where

(A-9)

It is worth noting that is also a function of . In a
uniaxial medium, and are, in general, not identical as in-
dicated by (A-4). Since represents a TM wave, is as-
sumed unless an explicit expression is given as .
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